沼津高専 電子制御工学科
DCモータ調査報告書
MIRS9803-TECH-0007
改訂記録
版数 作成日 作成者 承認 改訂内容
A01 1998.12.15 廣瀬 初版

maxon DC モータ



モータ型番 : RE025-055-34-EBA201A

モータ寸法図

モータデータ
定格出力20[W]最大連続トルク24.45[mNm]
公称電圧18.00[V]公称電圧時最大出力55200[mW]
無負荷回転数10200[rpm]最大効率83.2[%]
停動トルク219[mNm]トルク定数16.3[mNm/A]
回転数/トルク勾配48.1[rpm/mNm]回転数定数585[rpm/V]
無負荷電流53.9[mA]機会的時定数4.63[ms]
起動電流13400[mA]ロータ慣性モーメント9.19[gcm2]
端子間抵抗1.34[Ω]端子間インダクタンス0.12[mH]
最大許容回転数11000[rpm]熱抵抗(ハウジング/周囲間)14.00[K/W]
最大連続電流1500[mA]熱抵抗(ロータ/ハウジング間)3.10[K/W]

各項目の解説

運転範囲


DCモーターとは


 一般的に言う直流モーターであり、直流電源で回すことができる。DCモーターは制御用モーターとして非常に優れた回転特性を有している。例えば、大きな起動トルク、電圧変化に対するリニアな回転特性、入力電流に対する出力トルクの直線性、出力効率の良さなどおよそ制御用モーターに要求されるすべての性能を兼ね備えたモーターといえる。
※トルクとは、モーターの回転力のことであり、これが大きいほどその出力パワーも大きくなる。ここでトルクとは日本語に訳すと回転力ということになるが、このトルクは直線運動における推進力に相当する。また、トルクの単位は[kgf・m]で表されるが、これをSI単位系になおすと[N・m]になる。


DCモーターの基本

 電源電圧がモーターに供給されている時の関係式は、
     Ea=Ra×Ia+Ec
 Eaが供給された直後はモーターが回転していないので、Ecは0である。従って モーター起動時の式は、

モーター起動時の式    


     Ea=Ra×Ia
     Ia=Ea÷Ra
である。Iaは、このモーターの起動時の電流であり、これがこのモーターの最大電流である。(この時モーターは最大トルクを生じる。最大トルクを生じるのはこの時と過負荷で動けない時であり、過負荷が最大トルクを上回っていて起動できない時、 W=Ia2×Ra のジュール熱を生じ、その熱によりモーターを損傷する恐れがある。
 従って、負荷は最大トルクの30〜50%位にする。)

モーターの電流と回転数との関係

 モータートルクTは一般に、モーター自身のトルク定数をKtとすると、流れる電流Iaに比例する。
     T=Kt×Ia
これより、モーターに流れる電流は、
     Ia=T÷Kt
となる。又、モーターの回転数Nは、逆起電圧Ecとほぼ比例する。
     Ec(N)=Ea-Ra×Ia より、
     N=Ec(N)/(Ec÷N')
[Ec(N):モーター仕様の逆起電圧C[V](N'[rpm])]
という関係がある。


 

モーターの特性カーブ

モーターの性能

・ モーターの電気的時定数(time constant)τeを小さくする。
     τe=L/Ra (L:等価インダクタンス、Ra:巻線抵抗)
 ※時定数とは、変化の速度を表わす指標である。
  電気的時定数とは、モータを拘束しておき、電機子に定電圧を印加してから電流がその飽和値の63%まで立ち上がるのに要する時間である。
これより、巻線抵抗が大きく、等価インダクタンスが小さければ良いことが分かる。

モーターのT-N,T-I曲線
モーターのT-N,T-I曲線


・ 機械的時定数τmを小さくする。
     τm=(Jm)/(Ke・Kt)
           (Jm:ロータイナーシャ、Ke:逆起電力定数
             Ra:電機子巻線抵抗、Kt:トルク定数)
   従って、Jm、Raは小さく、Ke、Ktを大きくすればよい。
 ※機械的時定数...... 停止状態から無負荷回転数の63%まで加速するのに要する時間である。

・ N-Tカーブのリニアリティをよくする。理想的には、IとNは比例、TとNは逆の比例関係になるが、実際は、Nの上限で特性が曲がったり下限でリプルを生じる。従って、多スロット型、スロットレス型のモーターを選ぶ必要がある。
 ※(トルク)リプル...... 出力トルクの変動分を、平均トルクに対する百分率で示すもの。この値が大きいと軸振動や騒音がひどくなる。
   スロット...... スロットとは、回転子鉄心の"溝 "である。これがあると、軸の固有振動数が変わるので、それによってモーターの振動との共振を避け、騒音を抑えられる。スロットレスモーターはスロットを持たないものをいうが、別名で平滑鉄心モーターともいう。


 
DCモーターの特性を表す記号
記号 名称 単位 記号 名称 単位
Tt 全発生トルク N・m Ea 電機子端子電圧 V
Ta 有効出力トルク N・m N 回転数 rps(rpm)
To 損失トルク N・m Ra 電機子抵抗 Ω
Nt 無損失時の無負荷回転数 rps(rpm) Ec 逆起電圧 V
Na 無負荷回転数 rps(rpm) η 効率 %
It 起動電流 A ηm 最高効率 %
Io 無負荷電流 A W 出力 W
Km トルク定数 N・m/A Wm 最高出力 W
ω 回転角速度 rad/sec Ke 逆起電力定数 V/rpm

DCモーターの特性を算出する公式

Tt=Ta+To=Ke・I
[全発生トルク]=([有効出力トルク]+[損失トルク])=[逆起電力定数]・[電流]
Ec=Ke・ω
[逆起電圧]=[逆起電力定数]・[回転角速度]
Ea=Ec+Ra・I
[電機子端子電圧]=[逆起電圧]+[電機子抵抗]・[電流]
N=Na・(1-[T/Ta])=Nt・(1-[T/Tt])
[回転数]=[無負荷回転数]・(1-(T/[有効出力トルク]))=[無損失時無負荷回転数]・[1-(T/[全発生トルク])]
ω=(Ea-Ra・I)/Ke=(Ea/Ke)-((Ra・To)/Ke2)-((Ra・T)/Ke2)
[回転角速度]=(([電機子端子電圧]-[電機子抵抗]・[電流])/[逆起電力定数])-(([電機子抵抗]・[損失トルク])/[逆起電力定数]2)-(([電機子抵抗]・[トルク])/[逆起電力定数]2)
η=(2πNT)/(EaI)
[効率]=(2π・[回転数]・[トルク])/([電機子端子電圧]・[電流])

PWM制御

PWMの役割について

 PWM(Pulse Width Modulation)回路とは、周期は一定で、入力信号(DCレベル)の 大きさに応じて、パルス幅のデュ−ティ・サイクル(パルス幅のHとLの比)を変え、モーターを制御する回路に対して、これは飽和(スイッチング)領域での制御となる。
 従って、パワー・トランジスタを飽和領域で使用する為、電力ロスが軽減され、トランジスタもそれ程発熱しない。更に必要な時間だけ通電するので、モータ・ドライブ回路全体の効率があがり、電圧の負担も軽くなる。


パルス制御法

 パルス制御法はモータのオンオフ制御をパルスによって行う方法である。これによりオフタイムでの電池の消耗が全くなくなる。またオンタイムでも制御トランジスタが完全に飽和しているので、ここでの電力ロスも最小限に抑えられ、トランジスタの電力ロスが著しく軽減される。
 しかし、パルス駆動によるモータの振動音、ブラシ、コシュテータの著しい磨耗、それに電気ノイズの発生等のいろいろな問題を抱えている。下の図はパルス制御法の原理図である。
 なお前ページの回路では、モータへのピーク電圧が電源電圧とほぼ同じになるが、この場合、オフタイムがあるのでその平均電力は低くなる。


パルス制御法の原理図
パルス制御法の原理図


・PWM制御

 モータのPWM制御は、パルス制御法の発展形でありこの方式はオンパルスの通電幅を任意に変化させている。つまり、パルス幅を変調することによって結果的にモータへの供結エネルギーをコントロールしている。
 反対に下側のデューティ小は、回転数もそれに対応して低くなっているが、この時、オフタイムが最も長い。
 また真ん中は、デューティ50%で、この時オンタイムオフタイム共に等しく、制御回路のちょうど中間を表している。
 ところで、PWMを含めたパルス制御法は、電力パルスがオンの時だけモーター電流を流し、それ以外の時は休んでいるので、その間トランジスタや電流の負担が軽くなるのは良いが、欠点がない分けではない。これは、オフタイム中に起きてしまう事で、モータもコイルがある限り、そこには必ず何がしかのインダクタンスを有するので、これにオフ時の自己誘導作用が発生し、大きな逆起電力を誘発する。これは、制御用トランジスタを破壊するだけでなく、非常に大きな雑音を周囲に巻き散らし、ひいては大きな電磁波被害となる。これを解決したのがダイオードD1で、一般にこれをフライホイールダイオードと呼んでいる。この働きは、モーターオフ時に誘発する逆方向の電力をダイオードを介して同じモータに回生してやる事である。こうすることによって、高レベルの電気雑音が抑制されるだけでなく、そのエネルギーをオフタイム中、モータに流す事が出来るので、モーター電流が連続的となり、その結果エネルギー効率が上がり、なおかつモーターの動きもスムーズになる。
 なおこの回路では、モータへのピーク電圧が電源電圧とほぼ同じになるが、この場合、オフタイムがあるのでその平均電力は低くなる。


   次にPWM制御回路図を示す。


PMW制御回路図
PMW制御回路図


 下の図は、3つのパルス幅について説明している。
 一番上がデューティ大で、エネルギーが最も大きく、回転数もこれに応じて高くなる。
 なお、この時オフタイムが最も短い。


パルス幅について
パルス幅について


アナログ制御とPWM制御との違い

アナログ制御とPWM制御1


アナログ制御とPWM制御2


 A図はPWM制御の波形を示したものである。図(a)は信号Aが急激に変化した場合の、電力変化のあるパルス列となる。これより、モーターに供給されるエネルギ変化の様子が分かる。


・タイマICによるPWMパルスの作り方


 50Hz〜4kHz程度の基本周期をもつパルス列を発生させ、デューティ比を制御するには、専用のハードウェアかタイマICを用いるのが簡単である。
 下に図を示す。


タイマICによるPWMパルス
タイマICによるPWMパルス


 1kHzの基本周期は外部発信機で発生させ、その立ち上がりでタイマをイニシャライズする。  デューティー比はプリセッサよりデータとして与える。タイマはワンショット・パルス発生モードとしてイニシャライズさせるたびにデータの値*タイマ・クロック時間だけ出力を"1"とする。

ギア比の算出方法

MIRS本体の総重量   M [kg]
タイヤの直径     d [m]
最高速度       Vmax [m/s]
最高加速度      αmax [m/s2]とすると
加減速に必要な力  Fmax=M・αmax
加減速に必要なトルク Tmax=Fmax・d/2ギア比iは、
トルク面では i≧Tmax/適性負荷=A
速度面では i≦定格回転数・π・d/最高速度=B
∴A≦i≦B の間からギア比iを選ぶ。


回路概略図

Fig 7.3 回路概略図(17KB)
Fig.回路概略図


速度データの説明

Fig 7.4 速度データの説明(14KB)
Fig.速度データの説明


可逆パワー変換ボード

Fig 7.5 可逆パワー変換ボード(28KB)
Fig.可逆パワー変換ボード


可逆パワー変換ボードの説明

モータに電流が流れると、一時的に電力が急上昇し、それと同時にソフト部の電力が急降下し、支障が出る。そのため電源を別々にしなければならない。また、モータによるノイズがソフト部に影響を及ぼすので、グランドも別々にしなければならない。したがってソフト部との電気的つながりを一切断たなければならない。そこでフォトトランジスター(TLP521)を利用し、(2SK971)に電圧をかけ、モータのスイッチをON,OFFしたり、リレー回路によってモータに流れる電流の向きを変換させ、モータの回転方向を変換する。


◎ 今回使用するモーターの詳細 ◎

出力トルク回転数電流入力出力効率
[Nm][rpm][mA][W][W][%]
0.0026153.900.390.000.0
0.10236558.424.022.4761.5
0.202121062.947.654.435709
0.301871567.4611.29508752.0
0.401622071.9814.926.7845.5
0.501372576.5018.557.1838.7
0.601133081.0222.187.0731.9
0.80634090.0629.455.2717.9
0.90384594.5933.083.6010.9
1.00135099.1336.711.413.8
1.05-05373.1338.69-0.00-0.0
 
最大連続電流時最大出力時最大効率時
トルク0.34[Nm]0.53[Nm]0.10[Nm]
回転数177[rpm]131[rpm]237[rpm]
電流1771[mA]2714[mA]538[mA]
出力6.30[W]7.20[W]2.38[W]
効率49.4[%]36.9[%]61.5[%]

[引用]
http://www2.denshi.numazu-ct.ac.jp/mirsdoc/mirs97/tech_data/motor/mirs97dc.htm
http://www2.denshi.numazu-ct.ac.jp/mirsdoc/mirs97/tech_data/motor/motor1.htm

関連文書