

電子機械設計・製作Ⅱ

後期15回 実装(パート開発)5 試験報告書と統合レビュー

> 牛丸 真司 小谷 進 大沼 巧 香川真人

青木悠祐

後期スケジュール

電子機械設計・製作 II (3単位: 週2回6コマ)							
1	9/27			16	12/5		単体・機能試験報告書 UP
2	9/30			17	12/9	P.6	システム 統合
3	10/3	P.3	基本設計・試作	18	12/12		
4	10/6			19	12/19		システム統合レビュー
5	10/14		レビュー 安全講習	20	12/23	P.7	システム試験・改良
6	10/17			21	1/6	F./	ンベノム武級・以及
7	10/21			22	1/13		
8	10/24	P.4	詳細設計·試作	23	1/16		システム試験報告書UP
9	11/4		レビュー	24	1/20	P.8	社会実装実験
10	11/7			25	1/23		
11	11/11		•	26	1/27		発表会準備
12	11/14		実装(パート開発)	27	1/28		MIRS発表会
13	11/18	P.5	乗級(ハート開発) 部品製作・回路製作 ・プログラミング	28	1/30		
14	11/21		747 7277	29	2/6	P.9	開発完了報告
15	12/2			30	2/10		

単体・機能試験報告書システム試験報告書

- 標準機製作(電子機械設計演習)時の試験報告書のテンプレートを使ってよい。ただし、試験項目は各チームで設定すること。
- 単体試験、機能試験の報告書は、単体・機能試験 として一体のドキュメントとして、パート毎に作 成すること。(レビュー不要)
- システム試験報告書(=統合試験報告書)は、 チームで作成し、各チームのレビューワのレビューを受けること。
- 作成した報告書は、報告書(REPT)として管理台帳アップすること。その際、解体報告書・プロジェクト企画書と同様にPDFファイルをリンクするようにしてもよい。

標準機製作時の単体・機能試験 報告書のテンプレート

チーム名 MIRS220x 単体試験報告書

最終更新日

作成者_____

					I		
試験対象	試験項目	試験内容・方法	実 施	実施者	試験結果	合否	参照ドキュメント、備考
			日				
(例)	部品配置、配線	ドナーシントピかりの部口部		佐藤、山下	ドナーフトトロナ	0	MIDENICAD SVET ASSE
	1	l .	6/9	1红腺、川下	ドキュメントどお	0	MIRSMG4D-SYST-0005
電源ボード	確認	置、配線になっているかを目			りになっている		
		視で確認する					

(行数が不足した場合は追加すること)

標準機製作時の統合試験報告書のテンプレート

	人名	MIRSONN	統合試驗報生書

最終更新日

作成者_____

試験項目	試験内容と合否条件	試験方法	実施	実施者	試験結果	合否	備考
直進動作	3mを直進して、停止さ		日				
	せる。途中の左右のブレ						
	は±5cm以内、停止距離						
	の誤差は±5cm以内とす						
	る。直進速度は 20cm/s						
	および 50cm/s とす						
	る。						
回転動作	90度づつ一端停止して、360						
	度時計回りおよび反時計回						'
	りに回転する。回転速度は						
	30度/sおよび60度/sとま						
	盏。						
	数字ボードに対して±20度傾						
作 + 数字	いた状態から、指定距離ま						
認識	で近づいて数字ボードと正 対する。その後、数字ボー						
	ドの数字を認識し、その数						
	字×10cm下がる。						
	スタート位置は指定距離から±50cmにあり、指定距離						
	は1m.とする。正対補正後の						
	壁との距離の誤差は 3cm以						
	内、傾きは10度以内とす						
同地仁林	3.						
回避行動(1)	20cm/s で直進走行中に前方						
/	の障害物との距離が20cm以 下になったら停止し、2秒後						
	トになったら骨止し、2秒後 に30cm下がる。						
回避行動	に30cm r かる。 20cm/s で直進中に障害物に						
(2)	前方バンパーが接触した						
	前カハンパーが接触した ら、100m秒以内に停止し、						
	ら、100m 杉以内に停止し、						

?

システム統合レビュー(1)

- 目的
 - システム統合の進捗状況を評価し、今後の開発方針(最終的にデモ機に実装する機能等)を決定する。
- 実施日
 - 2022年12月19日(月)15:00-16:30
- 実施場所
 - クリエイティブラボ(大型ディスプレイ前)

?

システム統合レビュー(2)

- 実施方法
 - システム統合の進捗状況を記したプレゼン資料を用意し、その説明を行う。
 - 実現した機能は、可能な限りデモ機で 実演すること。
 - 準備が出来た班から実施する。(各班 15分程度)
- レビュー参加者
 - チームメンバー(PM,TLは必須)
 - チームレビューワ&主担当(牛丸)

進捗報告資料(1)

- ▶ 開発項目毎に、優先度、進捗状況を記すこと
- ▶ 開発項目(要素・機能)はシステム提案書に 記載されている項目の粒度で示すこと。
- ▶ 優先度がシステム提案書から変更となる場合は、その理由を備考欄に示すこと。

優先度の定義

- ▶ A:デモ機で実現する項目
- ▶ B:製品として必須の項目(Aに加えて)
- > C:製品の付加価値を高める機能)

?

進捗報告資料(2)

- ▶ 形式は特に問わないが、プレゼン資料として用 意すること。
- 以下のような表にまとめてよい。

開発項目	優先度	進捗状況	備考

例) MIRS2106 週番サポートプロジェクト進捗報告 🧵

「週番(日直)の仕事は実は多い!そんな時、ロボットがあなたをサポートします」

- 週番の仕事(課題ノート回収、黒板汚れ判定、御用聞き)をサポート
 - 課題ノートをMIRSが持って先生の部屋まで一緒に移動します
 - 黒板の汚れ具合を画像処理で判定、キレイ度をもとに追加の掃除を指示します
 - MIRSが先生に定期メール連絡。先生からの返信をクラスLINEに転送します

開発要素	機能	優先 度	開発状況	備考
課題ノート回収	1. ノートを乗せる	А	乗せる部分完成ノート40冊走行試 験まだ	
	2. 週番マーカーを 認識、追従	А	マーカー認識完了走行制御調整中	D4教室⇔鄭研を想定
黒板汚れ 判定	1. 黒板の汚れを認識	В	輝度値計測はOK汚れ表現検討中	できればデモ機に搭載したい。
	2. 追加掃除場所を指示	С	未実装	
御用聞き	1. 授業前日に授業担当教員にメールで御用聞き	А	• メール送信は可能	○○先生から御用聞きは 直接来てほしいといわれ た…
	2. 受け取った内容をクラス LINEに転送	В	IFTTTアプレット導 入済み	1.の機能開発に集中するため、AからBに変更

作業記録をこまめにつけること

- **✓** 01:ミーティング
- ✔ 02:ドキュメントレビュー
- ✓ 03:ドキュメント整備
- ✓ 20:技術調査
- ✔ 22:システム基本設計
- ✔ 23:システム統合試験
- ✓ 30,31,32:メカ/エレキ/ソフト詳細設計

1日の作業で項目が異なる場合は それぞれの作業時間、コードで登録すること(開 発報告書の工数分析に利用する)